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ABSTRACT
Given an undirected graph G and a seed node s , the local
clustering problem aims to identify a high-quality cluster

containing s in time roughly proportional to the size of the

cluster, regardless of the size ofG . This problem finds numer-

ous applications on large-scale graphs. Recently, heat kernel
PageRank (HKPR), which is a measure of the proximity of

nodes in graphs, is applied to this problem and found to be

more efficient compared with prior methods. However, exist-

ing solutions for computing HKPR either are prohibitively

expensive or provide unsatisfactory error approximation

on HKPR values, rendering them impractical especially on

billion-edge graphs.

In this paper, we present TEA and TEA+, two novel local

graph clustering algorithms based on HKPR, to address the

aforementioned limitations. Specifically, these algorithms

provide non-trivial theoretical guarantees in relative error
of HKPR values and the time complexity. The basic idea is

to utilize deterministic graph traversal to produce a rough

estimation of exact HKPR vector, and then exploit Monte-

Carlo random walks to refine the results in an optimized and

non-trivial way. In particular, TEA+ offers practical efficiency

and effectiveness due to non-trivial optimizations. Extensive

experiments on real-world datasets demonstrate that TEA+
outperforms the state-of-the-art algorithm bymore than four
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times on most benchmark datasets in terms of computational

time when achieving the same clustering quality, and in

particular, is an order of magnitude faster on large graphs

including the widely studied Twitter and Friendster datasets.
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1 INTRODUCTION
Graph clustering is a fundamental problem that finds numer-

ous applications, e.g., community detection [24, 30, 35], im-

age segmentation [23, 29], and protein grouping in biological

networks [18, 40]. The problem has been studied extensively

in the literature, and yet, clustering massive graphs remains a

challenge in terms of computation efficiency. This motivates

a series of algorithms [3–5, 11, 17, 21, 26, 31, 36, 38, 39, 43] for

local clustering, which takes as input an undirected graph G
and a seed node s , and identifies a cluster (i.e., a set of nodes)
containing s in time depending on the size of the cluster,

regardless of the size of G.
Local clustering algorithms have the potential to underpin

interactive exploration of massive graphs. Specifically, they

can facilitate exploration of a relatively small region of a

large graph that is of interest to a user. For example, consider

Bob, a budding entrepreneur, who is interested in exploring

the local clusters of visionary entrepreneurs in Twitter. Par-
ticularly, he wishes to begin his exploration with the cluster

associated with Elon Musk (i.e., seed). Since Bob thinks that
Elon Musk is an inspirational entrepreneur, he would like
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to explore if there are any other notable entrepreneurs (e.g.,

Kevin Rose) in Elon’s local cluster (e.g., followers, followees)
and wishes to further explore the local neighborhoods of

these entrepreneurs. In order to ensure a palatable and non-

disruptive interactive experience, Bob needs an efficient local

clustering framework that can return high quality clusters

within few seconds.Which existing local clustering framework
can Bob utilize for his exploration?

Spielman and Teng [21, 38] are the first to study the local

clustering problem, and they propose a random-walk-based

algorithm, Nibble, that optimizes the conductance [7] of the
cluster returned. Specifically, the conductance of cluster S

is defined as Φ(S) = |cut(S ) |
min{vol(S ),2m−vol(S )} , where vol(S) is the

sum of the degrees of all nodes in S ,m is the number of edges

in the graph G, and |cut(C)| is number of edges with one

endpoint in S and another not in S . Intuitively, if a cluster
C has a small conductance, then the nodes in S are better

connected to each other than to the nodes apart from S ,
in which case S should be considered a good cluster. This

algorithm is subsequently improved in a series of work [3,

4, 11, 26, 31, 36, 38, 39, 43] that aims to either improve the

efficiency of local clustering or reduce the conductance of

the cluster returned.

The state-of-the-art solutions [11, 17] for local clustering

are based on heat kernel PageRank (HKPR) [8], which is a

measure of the proximity of nodes in graphs. Given a seed

node s , these solutions first compute a vector ρ̂s where each
element ρ̂s [v] approximates the HKPR value of a nodev with

respect to s (i.e., ρ̂s [v] approximately measures the proximity

of s to v). Then, they utilize ρ̂s to derive a local cluster C
containing s . It is shown that the quality of S depends on the

accuracy of ρ̂s [12, 17], in the sense that the conductance

of S tends to decrease with the approximation error in ρ̂s .
Therefore, existing HKPR-based solutions [11, 17] all focus

on striking a good trade-off between time efficiency and

the accuracy of ρ̂s . In particular, the current best solution

HK-Relax [17] ensures that (i) 1

d (v)

��ρ̂s [v] − ρs [v]�� < ϵa for

any node v , where ϵa is a given threshold, d(v) is the degree
of node v and ρs [v] is the exact HKPR value of node v with

respect to s , and (ii) ρ̂s is computed in O
(
te t log (1/ϵa )

ϵa

)
time,

where t is constant (referred to as the heat constant) used in

the definition of HKPR.

Motivation. The time complexity of HK-Relax has a large
factor et , where t (i.e., the heat constant) could be as large

as a few dozens [11, 17, 22]. Consequently, it can be ineffi-

cient for several applications. For instance, reconsider Bob’s

endeavor to explore the local clusters of Elon Musk and

Kevin Rose. HK-Relax consumes around 15s and 48s, respec-

tively, to compute their local clusters. Such performance is

disruptive for any interactive graph exploration. In addition,

HK-Relax provides an accuracy guarantee on each
ρ̂s [v]
d (v) in

terms of its absolute error, but as we discuss in Section 3,

this guarantee is less than ideal for accurate local clustering.

Specifically, HKPR-based local clustering requires ranking

each node v in descending order of
ρ̂s [v]
d (v) , which we refer to

as v’s normalized HKPR. To optimize this accuracy of this

ranking, we observe that it is more effective to minimize the

relative errors of normalized HKPR values than their abso-

lute errors. To explain, we note that the normalized HKPR

varies significantly from nodes to nodes. For the aforemen-

tioned ranking, nodes with large normalized HKPR could

tolerate more absolute errors than nodes with small normal-

ized HKPR, and hence, imposing the same absolute error

guarantees on all nodes tend to produce sub-optimal results.

Our contributions.Motivated by the deficiency of existing

solutions, we present an in-depth study on HKPR-based local

clustering, and make the following contributions. First, we

formalize the problem of approximate HKPR computation

with probabilistic relative error guarantees, and pinpoint

why none of the existing techniques could provide an effi-

cient solution to this problem.

Second, based on our problem formulation, we propose

two new algorithms, TEA and TEA+, both of which (i) take

as input a seed node s , two thresholds ϵr , δ , and a failure

probability pf , and (ii) return an approximate HKPR vector

ρ̂s where each element ρ̂s [v] with
ρs [v]
d (v) > δ has at most ϵr

relative error with at least 1 − pf probability (i.e., all signif-
icant HKPR values are accurately approximated with high

probability). The core of TEA is an adaptive method that com-

bines deterministic graph traversal with random walks to

estimate normalized HKPR in a cost-effective manner, while

TEA+ significantly improves over TEA in terms of practical

efficiency by incorporating a number of non-trivial optimiza-

tion techniques. Both algorithms have a time complexity of

O
(
t log (n/pf )

ϵ 2

r ·δ

)
, which eliminates the exponential term et in

HK-Relax’s efficiency bound (see Table 1).

Third, we experimentally evaluate them against the state

of the art, using large datasets with up to 65million nodes and

1.8 billion edges. Our results show that TEA+ is up to an order
of magnitude faster than competingmethodswhen achieving

the same clustering quality. In particular, it can compute the

local clusters of Elon Musk and Kevin Rose within 1.3s and

6.1s, respectively, thereby facilitating interactive exploration.

Paper Organization. The rest of the paper is organized

as follows. In Section 2, we introduce background on heat

kernel-based local clustering. An overview of our solution

framework is presented in Section 3. We present TEA and

TEA+ in Sections 4 and 5, respectively. Related work is re-

viewed in Section 6. We evaluate the practical efficiency of

our algorithms against the competitors in Section 7. Finally,
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Table 1: Theoretical guarantee of our solution against that of the state-of-the-art solutions.
Algorithm Accuracy Guarantee Time Complexity

ClusterHKPR [11] with probability at least 1 − ϵ ,

{
|ρ̂s [v] − ρs [v]| ≤ ϵ · ρs [v], if ρs [v] > ϵ

|ρ̂s [v] − ρs [v]| ≤ ϵ, otherwise,
O

(
t log (n)
ϵ 3

)
HK-Relax [17] 1

d (v)

��ρ̂s [v] − ρs [v]�� < ϵa O
(
te t log (1/ϵa )

ϵa

)
Our solutions with probability at least 1 − pf ,


1

d (v)

��ρ̂s [v] − ρs [v]�� ≤ ϵr · ρs [v]d (v) , if

ρs [v]
d (v) > δ

1

d (v)

��ρ̂s [v] − ρs [v]�� ≤ ϵr · δ , otherwise,
O

( t log (n/pf )
ϵ 2

r ·δ

)
Table 2: Frequently used notations.

Notation Description
G=(V , E) An undirected graph with node set V and edge set E
n,m The numbers of nodes and edges inG , respectively

N (v) The set of neighbors of node v
d (v) The degree of node v

¯d The average degree of the graph, i.e.,
2m
n

A, D, P The adjacency, diagonal degree, and transition matrices ofG
t The heat constant of HKPR

η(k ),ψ (k ) See Equation (1) and Equation (3), respectively

ρs [v] HKPR of v w.r.t. s , defined by Equation (2)

ϵr , δ , pf Parameters of an approximate HKPR, as in Section 3

r(k )s [v] The k -hop residue ofv during performing push operations from s
qs [v] The reserve of v during performing push operations from s
K The maximum number of hops during performing push operations

from the seed node

Section 8 concludes the paper. Proofs of theorems and lem-

mas are given in Appendix A and [1], respectively. Table 2

lists the notations that are frequently used in our paper.

2 PRELIMINARIES
2.1 Basic Terminology
Let G = (V , E) be an undirected and unweighted graph,

where V and E denote the node and edge sets, respectively.

We use d(v) to denote the degree of node v , and A to denote

the adjacency matrix of G; i.e., A[i, j] = A[j, i] = 1 if and

only if (vi ,vj ) ∈ E. Let D be the diagonal degree matrix of G ,
where D[i, i] = d(vi ). Then, the probability transition matrix
(a.k.a. random walk transition matrix) for G is defined as

P = D−1A. Accordingly, Pk [s,v] denotes the probability that

a k-hop (k ≥ 1) random walk from node s would end at v .
A cluster inG is a node set S ⊆ V . Intuitively, a good cluster

should be both internally cohesive and well separated from

the remainder of G . We say that S is a high-quality cluster if

it has a small conductance [7] Φ(S), defined as:

Φ(S) =
|cut(S)|

min{(vol(S), vol(V \ S))}
,

where vol(S) is the volume of S , namely, the sum of the de-

grees of all nodes in S , and cut(S) is the cut of S , i.e., the set
of edges with one endpoint in S and another not in S .

2.2 Heat Kernel-based Local Clustering
Given a heat constant t and two nodes u and v , the HKPR
value from u to v is defined as the probability that a random

walk of length k starting from u would end at v , where k is

sampled from the following Poisson distribution:

η(k) =
e−t tk

k!

. (1)

Let s be the seed node for local clustering. We define the

HKPR vector ρs of s as an n-size vector, such that the i-th
element of ρs equals the HKPR value from s to the i-th node

in G. In addition, we use ρs [v] to denote the HKPR value

from s to v , which is defined by

ρs [v] =
∞∑
k=0

η(k) · Pk [s,v]. (2)

Existing heat-kernel-based algorithms [11, 13, 17, 22] all

adopt a two-phase approach. In particular, they first compute

an approximate HKPR vector ρ̂s for s , and then perform a

sweep as follows:
(1) Take the set S∗ of nodes with non-zero values in ρ̂s .

(2) Sort the nodesv ∈ S∗ in descending order of
ρ̂s [v]
d (v) . Let

S∗i be a set containing the first i nodes in the sorted

sequence.

(3) Inspect S∗i in ascending order of i . Return the set S∗i
with the smallest conductance among the ones that

have been inspected.

It is shown in [22, 43] that the above sweep can be con-

ducted inO (|S∗ | · log |S∗ |) time, assuming that ρ̂s is given in

a sparse representation with O(|S∗ |) entries. In contrast, the

computation of ρ̂s is much more costly, and hence, has been

the main subject of research in existing work [11, 13, 17, 22].

3 SOLUTION OVERVIEW
Our solution for local clustering is based on heat kernel

PageRank, and it follows the same two-phase framework

in the existing work [8, 9, 11, 13, 17, 22]. That is, we also

compute an approximate HKPR vector ρ̂s for s , and then

conduct a sweep on ρ̂s . However, we require that ρ̂s should
be a (d, ϵr , δ )-approximate HKPR vector, which is a criterion

not considered in any existing work [8, 9, 11, 13, 17, 22].

Definition 1. ((d, ϵr , δ )-approximate HKPR) Let ρs be the
HKPR vector for a seed node s , and ρ̂s be an approximated
version of ρs . ρ̂s is (d, ϵr , δ )-approximate if it satisfies the
following conditions:
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• For every v ∈ V with ρs [v]
d (v) > δ ,��� ρ̂s [v]d (v) −

ρs [v]
d (v)

��� ≤ ϵr · ρs [v]d (v) ;

• For every v ∈ V with ρs [v]
d (v) ≤ δ ,��� ρ̂s [v]d (v) −

ρs [v]
d (v)

��� ≤ ϵr · δ . □

In other words, we require
ρ̂s [v]
d (v) to provide a relative error

guarantee when
ρs [v]
d (v) > δ , and an absolute error guarantee

when
ρs [v]
d (v) ≤ δ . This is to ensure that when we sort the

nodes in descending order or
ρ̂s [v]
d (v) (which is a crucial step

in the sweep for local clustering), the sorted sequence would

be close to the one generated based on
ρs [v]
d (v) . We do not

consider relative error guarantees when
ρs [v]
d (v) ≤ δ , because

(i) ensuring a small relative error for such a node v requires

an extremely accurate estimation of its normalized HKPR,

which would incur significant computation overheads, and

(ii) providing such high accuracy for v is unnecessary, since

v’s tiny normalized HKPR value indicates that it is not rele-

vant to the result of local clustering.

By the definition of HKPR (in Equation (2)), the HKPR

value of v w.r.t. s is a weighted sum of k-hop random walk

transition probabilities from s to v , where k is a Poisson dis-

tributed length. Thus, a straightforward method to compute

(d, ϵr , δ )-approximate HKPR for seed node s is to conduct

Monte-Carlo simulations using a large number of random

walks. Specifically, each random walk should start from s ,
and should have a length that is sampled from the Poisson

distribution in Equation (1). Letnr be the total number of ran-

dom walks, and ρ̂s [v] be the fraction of walks that end at a

nodev . Then, we can use ρ̂s [v] as an estimation of ρs [v]. By
the Chernoff bound (see Lemma 5) and union bound, it can

be shown that ρ̂s is (d, ϵr , δ )-approximate with probability

at least

1 − n · exp

(
−

nr · ϵ
2

r · δ

2(1 + ϵr /3)

)
.

Therefore, if we are to ensure that the above probability is

at least 1 − pf , then we can set nr =
2(1+ϵr /3) log (n/pf )

ϵ 2

r ·δ
. In

that case, the time required to generate the random walks is

O
(
t log (n/pf )

ϵ 2

r ·δ

)
. The main issue of this Monte-Carlo approach,

however, is that it incurs considerable overheads in prac-

tice (see our experimental results in Section 7.4). To explain,

consider a node v with a small ρs [v] but a relatively large

ρs [v]
d (v) > δ . By the requirements of (d, ϵr , δ )-approximation,

we need to ensure that |ρ̂s [v] − ρs [v]| ≤ ϵr · ρs [v]. In turn,

this requires that the number nr of random walks should be

large; otherwise, the number of walks that end at v would

be rather small, in which case the estimation of ρs [v] would
be inaccurate.

We also note that none of the existing methods [11, 17]

can be adopted to compute (d, ϵr , δ )-approximate HKPR ef-

ficiently. In particular, HK-Relax [17] only ensures that for

any node v ∈ V , 1

d (v)

��ρ̂s [v] − ρs [v]�� < ϵa . If we are to

use HK-Relax for (d, ϵr , δ )-approximation, then we need

to set ϵa = ϵr · δ , in which case its complexity would be

O

(
te t log

(
1

ϵr ·δ

)
ϵr ·δ

)
, which is considerably worse than the time

complexity of theMonte-Carlo approach, due to the exponen-

tial term et . The ClusterHKPR [11] algorithm suffers from a

similar issue, as we point out in Section 6.

To mitigate the deficiencies of the aforementioned meth-

ods, we present (in Section 4 and Section 5) twomore efficient

HKPR algorithms that satisfy the following requirements:

(1) Return a (d, ϵr , δ )-approximate HKPR vector ρ̂s with
at least 1 − pf probability, where pf is a user-specified

parameter;

(2) Run in O
(
t log(n/pf )

ϵ 2

r ·δ

)
expected time.

4 THE TEA ALGORITHM
This section presents TEA1

, our first-cut solution for (d, ϵr , δ )-
approximate HKPR. TEA is motivated by the inefficiency of

the Monte-Carlo approach explained in Section 3, i.e., it re-

quires a large number of randomwalks to accurately estimate

HKPR values. To address this issue, we propose to combine

Monte-Carlo with a secondary algorithm that could help

reduce the number of random walks needed. In particular,

we first utilize the secondary algorithm to efficiently com-

pute a rough estimation qs [v] of ρs [v], and then perform

random walks to refine each qs [v], so as to transform qs into
a (d, ϵr , δ )-approximate HKPR vector ρ̂s . Towards this end,
there are several issues that we need to address:

(1) How to design a secondary algorithm that could gen-

erate a rough approximation of the HKPR vector at a

small computation cost?

(2) How to enable Monte-Carlo to leverage the output of

the secondary algorithm for improved efficiency?

(3) How to ensure that the combination ofMonte-Carlo
and the secondary algorithm still provides strong the-

oretical assurance in terms of time complexity and

accuracy?

To answer the above questions, we first present our choice

of the secondary algorithm, referred to as HK-Push, in Sec-

tion 4.1; after that, we elaborate the integration of HK-Push
andMonte-Carlo in Section 4.2, and then provide a theoreti-

cal analysis of the combined algorithm in Section 4.3.

1
Two-Phase Heat Kernel Approximation
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Algorithm 1: HK-Push

Input: Graph G, seed node s , threshold rmax
Output: An approximate HKPR vector qs and K + 1

residue vectors r(0)s , . . . , r
(K )
s

1 qs ← 0, r(k )s ← 0 for k = 0, . . .;

2 r(0)s [s] ← 1;

3 while ∃v ∈ V ,k such that r(k )s [v] > rmax · d(v) do
4 qs [v] ← qs [v] +

η(k )
ψ (k) · r

(k )
s [v];

5 for u ∈ N (v) do

6 r(k+1)
s [u] ← r(k+1)

s [u] +
(
1 −

η(k )
ψ (k)

)
·

r(k )s [v]
d (v) ;

7 r(k)s [v] ← 0;

8 K ← max

{
k

��� ∃v ∈ V , r(k )s [v] > 0

}
;

9 return qs and r(0)s , . . . , r
(K )
s ;

4.1 HK-Push
Algorithm 1 shows the pseudo-code of our secondary al-

gorithm, HK-Push, for deriving a rough approximation ρ̂s
of the HKPR vector. Its basic idea is to begin with a vector

ρ̂s where ρ̂s [s] = 1 and ρ̂s [v] = 0 for all nodes v except s ,
and then perform a traversal of G starting from s , and keep

refining ρ̂s during the course of the traversal. In addition,

to facilitate its combination with random walks, it not only

returns an approximate HKPR vector qs , but also outputs

K + 1 auxiliary vectors r(0)s , . . . , r
(K )
s ∈ Rn that could be used

to guide the random walks conducted byMonte-Carlo. We

refer to qs as the reserve vector and r(k )s as the k-hop residue
vector. Accordingly, for any node v , qs [v] and r(k )s [v] are
referred to as the reserve and k-hop residue of v , respectively.
More specifically, HK-Push takes as input G, s , and a

residue threshold rmax . It begins by setting all entries in

qs and r(k )s to zero, except that r(0)s [s] = 1 (Lines 1-2). After

that, it starts an iterative process to traverseG from s (Lines
3-7). In particular, in each iteration, it inspects the k-hop
residue vectors to identify a node v whose k-hop residue

r(k )s [v] is above rmax · d(v). If such a node v exists, then the

algorithm updates the reserve and k-hop residue ofv , as well
as the (k + 1)-hop residues of v’s neighbors. In particular,

it first adds
η(k )
ψ (k ) fraction of v’s k-hop residue r(k)s [v] to its

reserve qs [v], where η(k) is as defined in Equation (1) and

ψ (k) =
∞∑
ℓ=k

η(ℓ), (3)

and then evenly distribute the other 1 −
η(k )
ψ (k ) fraction to the

(k + 1)-hop residues of v’s neighbors (Lines 4-6). For conve-
nience, we refer to the operation of distributing a fraction of

v’s k-hop residue to one of its neighbors as a push operation.

Algorithm 2: k-RandomWalk

Input: Graph G, node u, constant k ,
Output: An end node v

1 ℓ ← k ;

2 v0 ← u;

3 while True do
4 if rand(0, 1) ≤ η(k+ℓ)

ψ (k+ℓ) then
5 break;

6 else
7 Pick a neighbor vℓ+1

∈ N (vℓ) uniformly at

random;

8 ℓ ← ℓ + 1;

9 return vℓ ;

The rationale of the aforementioned push operations is that,

if a random walk from s arrives at v at the k-th hop, then

it has
η(k )
ψ (k ) probability to terminate at v , and has 1 −

η(k )
ψ (k)

probability to traverse to a randomly selected neighbor of

v at the next hop. After that, the algorithm sets r(k )s [v] = 0

(Line 7), and proceeds to the next iteration. After the iterative

process terminates, HK-Push identifies the largest K such

that r(K )s has at least one non-zero entry, and returns qs and
r(0)s , . . . , r

(K )
s . The following lemma shows a crucial property

of these reserve and residue vectors:

Lemma 1. Consider any iteration in Algorithm 1. Let qs and
r(0)s , . . . r

(K )
s be the reserve and residue vectors constructed by

the end of the iteration. We have

ρs [v] = qs [v] +
∑
u ∈V

∑K
k=0

r(k)s [u] · h
(k )
u [v], (4)

where
h(k )u [v] =

∑∞
ℓ=0

η(k+ℓ)
ψ (k) · P

ℓ[u,v], (5)

i.e., h(k )u [v] is the probability that a random walk stops at v ,
conditioned on the k-hop of the walk is at u. □

Intuitively, Lemma 1 indicates that for any node v , qs [v]
is a lower bound of ρs [v] in any iteration in Algorithm 1.

Since each iteration of Algorithm 1 only increases the re-

serve of a selected node and never decreases any others, it

guarantees that the difference between qs and ρs monoton-

ically decreases, i.e., qs becomes a better approximation of

ρs as the algorithm progresses. Although HK-Pushmay pro-

duce results that are far from satisfying the requirements of

(d, ϵr , δ )-approximate HKPR, it is sufficient for the integra-

tion withMonte-Carlo, as we show in Section 4.2.

4.2 Algorithm
Basic Idea. To incorporate HK-Push into Monte-Carlo, we
utilize Equation (4), which shows that the exact HKPR vector

ρs can be expressed as a function of qs , r(k )s , and h(k )u [v] for
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Algorithm 3: TEA

Input: GraphG , seed node s , thresholds ϵr and δ , threshold
rmax , and failure probability pf

Output: A (d, ϵr , δ )-approximate HKPR vector ρ̂s
1 if

∑
v ∈V p

d (v)−1

f ≤ 1 then
2 p′f ← pf ;

3 else
4 p′f ←

pf∑
v∈V pd (v )−1

f

;

5 ω ←
2(1+ϵr /3) log (1/p′f )

ϵ 2

r δ
;

6

(
ρ̂s , r

(0)
s , . . . , r

(K )
s

)
← HK-Push (s, rmax );

7 α ←
∑K
k=0

∑
u ∈V r(k )s [u];

8 nr ← α · ω;

9 for i = 1 to nr do
10 Sample an entry (u,k) from V × {0, 1, . . . ,K} with

probability
r(k )s [u]
α ;

11 v ← k-RandomWalk (G,u,k);
12 ρ̂s [v] ← ρ̂s [v] +

α
nr ;

13 return ρ̂s ;

any u,v ∈ V , and k ∈ [0,K]. Recall that qs and r(k )s are out-

puts of HK-Push, while h(k )u [v] is the conditional probability
that a random walk terminates at node v given that its k-th

hop is at nodeu. If we can accurately estimate h(k )u [v] for any
given u, v , and k , then we can combine the estimated values

with qs and r(k )s to obtain an approximate version of ρs . To-
wards this end, we conduct random walks starting from u,

and estimate h(k )u [v] based on the frequency that v appears

at the k-th hop of the random walks. Algorithm 2 shows

the pseudo-code of our random walk generation method,

referred to as k-RandomWalk.
The following lemma proves that k-RandomWalk samples

each node v with probability h(k )u [v].

Lemma 2. Given G, u, and k , for any node v , Algorithm 2
returns v with probability h(k )u [v]. □

Details. Algorithm 3 illustrates the pseudo-code of TEA,
our first-cut solution that (i) incorporates HK-Push and

k-RandomWalk and (ii) computes a (d, ϵr , δ )-approximate

HKPR vector ρ̂s with at least 1 − pf probability for any

given seed node s . Given G, ϵr , δ , rmax , and failure probabil-

ity pf as inputs, the algorithm starts by invoking HK-Push
with three parameters: G, s , and rmax (Line 6). It returns

an approximate HKPR vector ρ̂s and K + 1 residue vectors

r(0)s , . . . , r
(K )
s from HK-Push. Then, TEA proceeds to refine

ρ̂s using k-RandomWalk (Lines 7-13). In particular, TEA first

computes the sum α of the residues in r(0)s , . . . , r
(K )
s (Line 7),

and computes

ω =
2(1+ϵr /3) log (1/p′f )

ϵ 2

r ·δ
,

where

p ′f =


pf , if

∑
v ∈V pd (v)−1

f ≤ 1

pf∑
v∈V pd (v )−1

f

, otherwise.
(6)

Note thatp ′f can be pre-computedwhen the graphG is loaded.

Given ω, TEA performs nr = α · ω random walks using

k-RandomWalk (Lines 9-12), such that the starting point u

of eachwalk is sampledwith probability
r(k )s [u]
α (Line 10). Note

that this sampling procedure can be conducted efficiently by

conducting an alias structure [41] on the non-zero elements

in r(0)s , . . . , r
(K )
s . For each random walk that ends at a node v ,

TEA increases ρ̂s [v] by
α
nr

(Line 12).

Observe that the parameter rmax in TEA controls the

balance between its two main components: HK-Push and

k-RandomWalk. In particular, by Algorithm 1, the entries in

r(0)s , . . . , r
(K )
s are bounded by rmax . Therefore, when rmax is

small, α =
∑K

k=0

∑
u ∈V r(k )s [u] would decrease, in which case

the total number α · ω of random walks conducted by TEA
would also be small. As a trade-off, the processing cost of

HK-Push would increase, as shown in the following lemma:

Lemma 3. Given residue threshold rmax , Algorithm 1 runs
in O

(
1

rmax

)
time and requires O

(
1

rmax

)
space (excluding

the space required by the input graph). In addition, in the
residue vectors r(0)s , . . . , r

(K )
s returned by Algorithm 1, there are

O
(

1

rmax

)
non-zero elements in total.

To strike a balance between the costs incurred byHK-Push
and k-RandomWalk, we set rmax = O(

1

ω ·t ). In that case, the

processing cost ofHK-Push isO(ω ·t), while k-RandomWalk
incurs O(αωt) expected cost, due to the following lemma:

Lemma 4. The expected cost of each invocation of
k-RandomWalk is O(t).

Hence, setting rmax = O(
1

ω ·t ) ensures that the overheads

of HK-Push and k-RandomWalk are roughly comparable.

4.3 Analysis
Correctness. Let qs denote the approximate HKPR vector

obtained from HK-Push in Line 6 of TEA, and ρ̂s be the

approximate HKPR vector eventually output by TEA. In the

following, we show that ρ̂s is a (d, ϵr , δ )-approximate HKPR

vector.

First, by Lemma 1, we have the following equation for any

node v :

ρs [v] = qs [v] + as [v], (7)

where

as [v] = α ·
∑K

k=0

∑
u ∈V

r(k )s [u]
α · h(k )u [v]. (8)
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Consider the i-th invocation of k-RandomWalk in TEA. Let
(u,k) be the entry sampled by TEA (in Line 10) before the

invocation, and v be the node returned by k-RandomWalk.
Let Yi be a Bernoulli variable that equals 1 if v is returned,

and 0 otherwise. By Lemma 2,

E[Yi ] =
∑
u ∈V

∑K
k=0

r(k )s [u]
α · h(k )u [v]. (9)

Combining Equations (8) and (9), we have

E
[∑nr

i=1
Yi ·

α
nr

]
= as [v], (10)

which indicates that

∑nr
i=1

Yi ·
α
nr

is an unbiased estimator of

as [v]. By the Chernoff bound (in Lemma 5), we can prove

that this estimator is highly accurate, based on which we

obtain Theorem 1.

Lemma 5 (Chernoff Bound [10]). Let X1,X2, · · · ,Xnr ∈

[0, 1] be i.i.d. random variables, and X =
∑nr

i=1
Xi . Then,

P[|X − E[X ]| ≥ λ] ≤ exp

(
− λ2

2E[X ]+2λ/3

)
. □

Theorem 1. TEA outputs a (d, ϵr , δ )-approximate HKPR
vector ρ̂s with probability at least 1 − pf .

Time and Space Complexities. Given rmax = O
(

1

ω ·t

)
,

HK-Push runs in O(ω · t) time and O(ω · t) space. In ad-

dition, the computation of α as well as the construction of

alias structure on r(k )s can be done in time and space linear to

the total number of non-zero entries in r(0)s , . . . , r
(K )
s , which

isO(ω ·t) (see Lemma 3). Furthermore, in terms of both space

and time, the total expected cost incurred by the random

walks in TEA is O(αωt), where α < 1. Therefore, the time

complexity of TEA is

O

(
1

rmax
+ α · ωt

)
= O

(
t log (1/p ′f )

ϵ2

r · δ

)
= O

(
t log (n/pf )

ϵ2

r · δ

)
,

and its space complexity isO
(
n +m +

t log (n/pf )
ϵ 2

r ·δ

)
, where the

n +m term is due to storing of the input graph.

5 THE TEA+ ALGORITHM
Although TEA provides a strong accuracy guarantee, we

observe in our experiments that it often performs a large

number of random walks, which degrades its computation

efficiency. One may attempt to reduce the cost of random

walks by decreasing the residue threshold rmax in TEA (see

the discussion in the end of Section 4.2), but this cost reduc-

tion would be offset by the fact that HK-Push incurs a larger

overhead when rmax is small.

In this section, we present TEA+, an algorithm that sig-

nificantly improves over TEA in terms of practical efficiency

without degrading its theoretical guarantees. TEA+ is simi-

lar in spirit to TEA in that it combines random walks with

a variant of HK-Push, but there is a crucial difference: after
TEA+ obtains the residue vectors r(0)s , . . . , r

(K )
s , it may reduce

Algorithm 4: HK-Push+

Input: Graph G, seed node s , thresholds ϵr and δ ,
maximum hop number K , maximum number of

pushes np
Output: An approximate HKPR vector qs and K + 1

residue vectors r(0)s , . . . , r
(K )
s

1 qs ← 0, r(k )s ← 0 for k = 0, · · · ,K ;

2 r(0)s [s] ← 1;

3 i ← 0;

4 while ∃v ∈ V ,k < K such that r(k )s [v] >
ϵr ·δ
K · d(v) do

5 i ← i + d(v);

6 if i ≥ np or
∑K

ℓ=0
maxu ∈V

{
r(ℓ)s [u]
d (u)

}
≤ ϵr · δ then

7 break;

Lines 8-11 are the same as Lines 4-7 in Algorithm 1;

Line 12 is the same as Line 9 in Algorithm 1;

some entries in the residue vectors before performing ran-

dom walks. That is, for each nodeu that has a non-zero entry

r(k )s [u] for some k , TEA+ may choose to perform a smaller

number of random walks from u than TEA does, which effec-

tively reduces the total cost of random walks. Establishing

the correctness of this pruning approach, however, is non-

trivial. In what follows, we first discuss in Section 5.1 the ex-

treme case where we can derive (d, ϵr , δ )-approximate HKPR

while ignoring all elements in the residue vectors r(0)s , . . . , r
(K )
s ;

after that, in Section 5.2, we generalize our discussions to

the case where we reduce the non-zero entries in the residue

vectors instead of completely omitting them.

5.1 The Case without RandomWalks
Suppose that we are to let TEA achieve (d, ϵr , δ )-
approximation without performing any random walks. In

that case, we would need to ensure that Line 6 of TEA ob-

tains a (d, ϵr , δ )-approximate HKPR vector from HK-Push.
Towards this end, we present the following theorem:

Theorem 2. Let qs and r(0)s , . . . r
(K )
s be the reserve and

residue vectors returned by HK-Push. If∑K
ℓ=0

maxv ∈V

{
r(ℓ)s [v]
d (v)

}
≤ ϵa, (11)

then, for any node v in G, we have��� qs [v]
d (v) −

ρs [v]
d (v)

��� ≤ ϵa . (12)

Theorem 2 provides a sufficient condition (i.e., Inequal-

ity (11)) forHK-Push to ensure ϵa absolute error in each
qs [v]
d (v) .

By Definition 1, such qs is a (d, ϵr , δ )-approximate HKPR vec-

tor as long as ϵa ≤ ϵr · δ . That said, it is rather inefficient to

let HK-Push run until Inequality (11) is satisfied. Instead, we

propose to letHK-Push run with a fixed budget of processing

Research 14: Graphs 2  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1345



cost. If it is able to satisfy Inequality (11) with ϵa = ϵr · δ
before the budget is depleted, then we return qs as the fi-
nal result; otherwise, we proceed to refine qs using random

walks (see Section 5.2).

Based on the above discussion, we present HK-Push+ (in

Algorithm 4), which is a revised version of HK-Push with

three major changes. First, HK-Push+’s input parameters

include three thresholds ϵr , δ , and np , and it has two new

termination conditions (in Line 6): (i) Inequality (11) holds

with ϵa = ϵr · δ ; (ii) The number of push operations that it

performs reaches np . Recall that a push operation refers to

the operation of converting part of a node’s k-hop residue

to one of its neighbor’s (k + 1)-hop residue. In other words,

HK-Push+ runs inO(np ) time and requiresO(np ) space, and
it returns a (d, ϵr , δ )-approximate HKPR vector whenever

Inequality (11) is satisfied.

Second, HK-Push+ judiciously performs push operations

only on nodes v with residue r(k )s [v] >
ϵr ·δ
K · d(v) (Line

4), whereas HK-Push conducts push operations only when

r(k )s [v] is larger than an input given threshold rmax · d(v).
The rationale is that HK-Push+ strives to reduce the k-hop

residue of each node below
ϵr ·δ
K ·d(v), so as to satisfy Inequal-

ity (11); in contrast,HK-Push is not guided by Inequality (11),

and hence, uses an ad hoc threshold rmax instead.

Third, HK-Push+ makes the maximum number K of hops

be specified as an input parameter, whereas HK-Push does

not fix K in advance. We use a fixed K in HK-Push+ be-

cause (i) as mentioned, Line 4 of HK-Push+ requires testing

whether there exists a node v with r(k )s [v] >
ϵr ·δ
K · d(v), and

(ii) such a test can be efficiently implemented whenK is fixed.

Otherwise, whenever K changes, we would need to recheck

all nodes’ residues to see if r(k)s [v] >
ϵr ·δ
K · d(v) holds, which

would incur considerable overheads. Meanwhile, HK-Push
can afford to let K dynamically change, since it uses a fixed

residue threshold rmax given as input. In our implementation

of HK-Push+, we set

K = c ·
log ( 1

ϵr ·δ
)

log( ¯d)
,

where
¯d is the average degree of the nodes in G, and c is a

constant that we decide based on our experiments in Sec-

tion 7.2. We refer interested readers to [1] for the rationale

of this setting of K .

5.2 The Case with RandomWalks
Suppose that HK-Push+ depletes its computation budget np
before it satisfies Inequality (11) with ϵa = ϵr · δ . In that

case, the HKPR vector qs returned by HK-Push+ does not

ensure (d, ϵr , δ )-approximation, and we need to refine qs by
conducting random walks according to the residue vectors

r(0)s , . . . , r
(K )
s returned by HK-Push+. To reduce the number

of random walks required, we propose to reduce the residues

Table 3: An example for TEA+

k ≤ 2 k = 3 k = 4∑
v∈V r(k )s [v] 0 0.1 0.3

maxv∈V
r(k )s [v ]
d (v ) 0

r(k )s [v1]

d (v1)
= 0.0025

r(k )s [v2]

d (v2)
= 0.0076

maxv∈V r(k )s [v] 0 r(k )s [v1] = 0.0025 r(k )s [v2] = 0.076

in r(0)s , . . . , r
(K )
s when conducting random walks, based on

the following intuition.

First, the reduction of residues would incur some errors in

the approximate HKPR vector, as demonstrated in Theorem 2

(where we ignore all residues in r(k )s and using qs directly
as the final approximate HKPR vector). Second, if we only

reduce the residues in r(k )s by a small value, then the absolute

errors incurred by the reduction could be so small that they

would not jeopardize (d, ϵr , δ )-approximation. In particular,

as we show in Section 5.4, if we reduce every residue r(k )s [v]
by βk · ϵrδ · d(v) (k = 0, 1, . . . ,K and v ∈ V ), then the

absolute error in
ρ̂s [v]
d (v) incurred by the residue reduction

is at most ϵrδ ·
∑K

k=0
βk . In other words, if we choose βk

such that

∑K
k=0

βk = 1, then the resulting absolute error in

ρ̂s [v]
d (v) is at most ϵrδ , which is permissible under (d, ϵr , δ )-

approximation. The following example demonstrates the

benefit of this residue reduction method.

Example 1. Suppose that given a graph G, seed node s ,
K = 4, and ϵr · δ = 0.01, HK-Push+ returns residue vectors

r(0)s , . . . , r
(4)
s that have the characteristics in Table 3. Note

that v1 has the largest 3-hop residue and degree-normalized

3-hop residue, while v2 has the largest 4-hop residue and

degree-normalized 4-hop residue. In addition, all of the 3-hop

residues except v1’s are less than 0.0025, and all of the 4-hop

residues except v2’s are less than 0.075. We can observe that∑
4

ℓ=0
maxv ∈V

{
r(ℓ)s [v]
d (v)

}
= 0.0025 + 0.0076 = 0.0101,

which is slightly larger than ϵr · δ . In this case, according to

Lines 7-8 in TEA, we need to perform α · ω random walks,

where

α =
∑K

k=0

∑
u ∈V r(k )s [u] = 0.4.

Now suppose that we apply the residue reduction method,

setting β3 = 1/4 and β4 = 3/4. In that case, we reduce every

residue r(3)s [v] by β3 · ϵrδ · d(v) = 0.0025 · d(v), and every

residue r(4)s [v] by β4 · ϵrδ · d(v) = 0.0075 · d(v). Then, all

residues in r(3)s and r(4)s are reduced to 0, except that r(4)s [v2]

is decreased to 0.076 − β4 · ϵrδ · d(v2) = 0.001. Accordingly,

α =
∑

4

ℓ=0
maxv ∈V r(ℓ)s [v] is reduced from 0.4 to 0.001, which

implies that the number of randomwalks required is reduced

by 400 times. □
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5.3 Details of TEA+
Based on the ideas described in Sections 5.1 and 5.2, we

present TEA+, which utilizes HK-Push+ and random walks

to compute a (d, ϵr , δ )-approximate HKPR vector ρ̂s with at

least 1−pf probability for any given seed node s . Algorithm 5

illustrates the pseudo-code of TEA+. The input parameters of

TEA+ are identical to those of TEA, except that TEA+ takes

an additional parameter c , which, as mentioned in Section 5.1,

is used to decide the maximum number K of hops used in

HK-Push+.
TEA+ starts by invoking HK-Push+ with the following

parameters (Lines 5-6):G , ϵr , δ ,K = c ·
log ( 1

ϵr ·δ
)

log ( ¯d )
, andnp =

ω ·t
2
,

where

ω =
8(1+ϵr /6) log (1/p′f )

ϵ 2

r ·δ
,

and p ′f is as defined in Equation (6) and is pre-computed

when G is loaded. Then, HK-Push+ returns an approximate

HKPR vector ρ̂s and K + 1 residue vectors r(0)s , . . . , r
(K )
s .

If

∑K
k=0

maxu ∈V

{
r(k )s [u]
d (u)

}
≤ ϵr · δ , then by Theorem 2, ρ̂s

is a (d, ϵr , δ )-approximate HKPR vector. In that case, TEA+
immediately terminates and returns ρ̂s (Line 7). Otherwise,
TEA+ proceeds to refine ρ̂s using k-RandomWalk (Lines 8-
20). But before that, TEA+ first applies the residue reduction

method discussed in Section 5.2. Specifically, it decreases

each residue value r(k )s [u] by βk ·ϵrδ ·d(u) (Lines 8-11), where

βk =
∑
u∈V r(k )s [u]∑K

ℓ=0

∑
u∈V r(ℓ)s [u]

.

The rationale of this choice of βk is as follows. First,∑K
k=0

βk = 1, which is crucial for (d, ϵr , δ )-approximation,

as we mention in Section 5.2. Second, we set βk to be

proportional to

∑
u ∈V r(k )s [u] because, intuitively, when∑

u ∈V r(k )s [u] is large, the residue values in r(k )s also tend to

be large, in which case we need a larger reduction of the

residues in r(k )s to effectively reduce the number of random

walks needed.

After reducing the residues in r(0)s , . . . , r
(K )
s , TEA+ per-

forms random walks according to the reduced residues, in

the same way as TEA does (Lines 12-17). This results in a re-

fined approximate HKPR vector ρ̂s . Then, TEA+ gives ρ̂s [v]

a final touch by adding
ϵr ·δ

2
·d(v) to each ρ̂s [v] (Lines 18-19).

The intuition of adding this offset to each ρ̂s [v] is as follows.
The residue reduction method leads to an underestimation

of each HKPR value, and amount of underestimation is in

[0, ϵr · δ · d(v)]. By adding an offset
ϵr ·δ

2
· d(v) to ρ̂s [v], the

range of the error in ρ̂s [v] becomes [−
ϵr ·δ

2
·d(v), ϵr ·δ

2
·d(v)],

in which case the maximum absolute error in ρ̂s [v] is re-
duced by half, which help tightening the accuracy bound of

TEA+.
Note that Lines 18-19 in TEA+ can be performed in O(1)

time, as we can keep each ρ̂s [v] unchanged but record the

Algorithm 5: TEA+

Input: Graph G, seed node s , constant c , thresholds ϵr and
δ , and failure probability pf

Output: A (d, ϵr , δ )-approximate HKPR vector ρ̂s
Lines 1-4 are the same as Lines 1-4 in Algorithm 3;

5 ω ←
8(1+ϵr /6) log (1/p′f )

ϵ 2

r δ
,np ←

ω ·t
2
,K ← c ·

log ( 1

ϵr ·δ
)

log ( ¯d )
;

6

(
ρ̂s , r

(0)
s , . . . , r

(K )
s

)
← HK-Push+ (s, ϵr , δ ,K,np );

7 if
∑K
k=0

maxu ∈V

{
r(k )s [u]
d (u)

}
≤ ϵr · δ then return ρ̂s ;

8 for k = 0 to K do

9 βk ←
∑
u∈V r(k )s [u]∑K

ℓ=0

∑
u∈V r(ℓ)s [u]

;

10 for any node u with r(k )s [u] > 0 do
11 r(k )s [u] = max

{
0, r(k )s [u] − βk · ϵrδ · d(u)

}
;

Lines 12-17 are the same as Lines 7-12 in Algorithm 3;

18 for v ∈ V do
19 ρ̂s [v] ← ρ̂s [v] +

ϵr ·δ
2
· d(v);

20 return ρ̂s ;

value of
ϵr ·δ

2
along with ρ̂s . Then, whenever ρ̂s [v] is ac-

cessed, we can add
ϵr ·δ

2
·d(v) to ρ̂s [v] on the fly. In addition,

for the purpose of local clustering, we can simply ignore this

offset of
ϵr ·δ

2
· d(v) since it does not affect the ranking of

nodes based on
ρ̂s [v]
d (v) . An example to illustrate TEA+ is given

in [1].

5.4 Analysis
Correctness. Let qs denote the approximate HKPR vector

returned by HK-Push+ in Line 6 of TEA+, r(0)s , . . . , r
(K )
s be

the residue vectors output by HK-Push+ at the same step,

and ρ̂s be the final version of the HKPR vector output by

TEA+. We define a residue vector rb(k )s as:

rb(k )s [u] = min

{
r(k )s [u], βk · ϵrδ · d(u)

}
. (13)

Observe that rb(k )s [u] equals the amount of residue reduction

on r(k )s [u] occurred in Lines 8-11 of TEA+.
Similar to the correctness analysis in Section 4.3, by

Lemma 1, we have the following equation for any node v :

ρs [v] = qs [v] + as [v] + bs [v], (14)

where

as [v] = α ·
∑K

k=0

∑
u ∈V

r(k )s [u]
α · h(k)u [v], and (15)

bs [v] =
∑K

k=0

∑
u ∈V rb(k )s [u] · h

(k)
u [v]. (16)

Then, the approximation error in each ρ̂s [v] can be regarded

as the sum of two approximation errors for as [v] and bs [v],
respectively. The error in as [v] is caused by sampling errors
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in k-RandomWalk, and hence, it can be bounded using the

Chernoff bound, in away similar to the analysis in Section 4.3.

Meanwhile, the error in bs [v] is due to the residue reduction
procedure in Lines 8-11 of TEA+. In what follows, we present
an analysis of the error in bs [v].
By Equation (13), for any node u ∈ V and k ∈ [0,K],

the amount of residue reduction on r(k )s [u] satisfies 0 ≤

rb(k )s [u] ≤ βk · ϵrδ · d(u). Combining this with Equation (16),

we have

0 ≤ bs [v] ≤
∑K

k=0

(
βk · ϵrδ

∑
u ∈V d(u) · h(k )u [v]

)
. (17)

Lemma 6 ([37]). Let u and v be any two nodes in G, and
Pk [u,v] (resp. Pk [v,u]) be the probability that a length-k ran-
dom walk from u ends at v (resp. from v ends at u). Then,
Pk [u ,v]
d (v) =

Pk [v ,u]
d (u) . □

By Lemma 6 and the definition of h(k )u [v] in Equation 5,

for any node v ∈ V and k ∈ [0,K], we have∑
u ∈V d(u) · h(k )u [v] = d(v) ·

∑
u ∈V h(k )v [u]

= d(v) ·
∑∞

ℓ=0

[
η(k+ℓ)
ψ (k ) ·

∑
u ∈V Pℓ[v,u]

]
= d(v) ·

∑∞
ℓ=0

η(k+ℓ)
ψ (k ) = d(v). (18)

Combining Equations (17) and (18), we have

0 ≤ bs [v] ≤ d(v) · ϵrδ . (19)

Therefore, estimating bs [v] as ϵr ·δ
2
· d(v) incurs an absolute

error of at most
ϵr ·δ

2
· d(v).

Based on the above analysis, we establish the accuracy

guarantee of TEA+ as follows:

Theorem 3. TEA+ outputs a (d, ϵr , δ )-approximate HKPR
vector ρ̂s with probability at least 1 − pf .

Time and Space Complexities. The time and space com-

plexities of TEA+ depend on its two main components:

HK-Push+ and k-RandomWalk. As discussed in Section 5.1,

both the computation and space overheads of HK-Push+
are O(np ). Since TEA+ sets np =

ω ·t
2
, its invocation of

HK-Push+ incursO
(
t ·log (n/pf )

ϵ 2

r ·δ

)
time and space costs. Mean-

while, the total number of random walks conducted by

TEA+ is no more than that by TEA, and hence, the computa-

tional and space costs of generating random walks in TEA+

are both O
(
t ·log (n/pf )

ϵ 2

r ·δ

)
in expectation. Thus, the expected

time and space complexities of TEA+ are O
(
t ·log (n/pf )

ϵ 2

r ·δ

)
and

O
(
m + n +

t ·log (n/pf )
ϵ 2

r ·δ

)
, respectively, where them + n term

is due to the space required by the input graph.

6 RELATEDWORK
In this section, we first review two HKPR algorithms,

ClusterHKPR and HK-Relax, that are most related to our

solutions; after that, we review other work related to local

clustering and HKPR computation.

ClusterHKPR. ClusterHKPR [11] is a random-walk-based

method for computing approximate HKPR. Given a seed

node s , it performs
16 logn
ϵ 3

random walks from s , with the

constraint that each walk has a length at most K ; after that,
for each node v , it uses the fraction of walks that end at v
as an estimation ρ̂s [v] of v’s HKPR. It is shown that with

probability at least 1 − ϵ , ClusterHKPR guarantees that{
|ρ̂s [v] − ρs [v]| ≤ (1 + ϵ) · ρs [v], if ρs [v] > ϵ

|ρ̂s [v] − ρs [v]| ≤ ϵ, otherwise.

Note that for the above guarantee to be meaningful, ϵ ≪ 1

should hold; otherwise, the successful probability 1 − ϵ of
ClusterHKPR would be too small, and there could be too

many nodes having a large absolute error up to ϵ . In particu-

lar, if we are to ensure that ClusterHKPR achieves (d, ϵr , δ )-
approximation with probability at least 1 − pf , then we

have to set ϵ ≤ min

{
ϵr · δ ,pf

}
. However, when ϵ ≪ 1,

ClusterHKPR incurs excessive computation cost, since its

expected time complexity is inversely proportional to ϵ3
.

HK-Relax. HK-Relax [17] is a deterministic algorithm that

runs in O
(
te t log (1/ϵa )

ϵa

)
time and returns an approximate

HKPR vector ρ̂s such that

��� ρ̂s [v]d (v) −
ρs [v]
d (v)

��� ≤ ϵa for anyv ∈ V .

HK-Relax is similar to our HK-Push algorithm in that they

both (i) maintain an approximation HKPR vector ρ̂s and a

number of residue vectors, and (ii) incrementally refine ρ̂s
by applying push operations according to the residue of each

node. However, there exist three major differences between

HK-Relax and HK-Push. First, HK-Relax and HK-Push de-

fine the residue of each node in different manners, due to

which HK-Relax requires more sophisticated approaches

than HK-Push to update ρ̂s and the residue vectors after

each push operation. Second, HK-Relax ignores all k-hop
residues with k > 2t log

1

ϵa
, whereas HK-Push retains all

residues generated for the refinement of ρ̂s via randomwalks.

Third, HK-Relax and HK-Push have different termination

conditions. Due to these differences, we are unable combine

HK-Relax with random walks to achieve the same perfor-

mance guarantee provided by our TEA and TEA+ algorithms.

Other methods for local clustering. The first local graph
clustering algorithm, Nibble, is introduced in the seminal

work [21, 38] by Spielman and Teng. After that, Ander-

son et al. [3] propose PR-Nibble, a local clustering algorithm
based on personalized PageRank [15, 32], and show that it

improves over Nibble in terms of the theoretical guaran-

tees of both clustering quality and time complexity. In turn,

Anderson et al.’s method is improved in subsequent work
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[4, 31] based on the volume-biased evolving set process [14].
Subsequent work [26, 36, 39, 43] achieves further improved

guarantees on the quality of local clustering, but the meth-

ods proposed are mostly of theoretical interests only, as they

are difficult to implement and offer rather poor practical

efficiency. As a consequence, HK-Relax remains the state-of-

the-art for local clustering in terms of practical performance

[5, 12, 17].

In recent work [22], Shun et al. study parallel implemen-

tations for Nibble, PR-Nibble, ClusterHKPR, and HK-Relax,
respectively, and are able to achieve significant speedup on a

machine with 40 cores. We believe that our algorithms may

also exploit parallelism for higher efficiency, but a thorough

treatment of this problem is beyond the scope of this paper.

Methods for personalized PageRank.We note that TEA
and TEA+ are similar in spirit to several recent methods [19,

25, 27, 28] for computing personalized PageRank (PPR), since

they all combine a push-operation-based algorithm with

randomwalks. Hence, at first glance, it may seem that we can

simply adopt and extend these techniques to address HKPR

computation. Unfortunately, this is not the case as HKPR is

inherently more sophisticated than PPR. In particular, even

though both HKPR and PPR measure the proximity of a node

v with respect to another node u by the probability that a

random walk starting from u would end at v , they differ

significantly in the ways that they define random walks:

• PPR’s random walks are Markovian: in each step of a

walk, it terminates with a fixed probability α ∈ (0, 1),
regardless of the previous steps.

• HKPR’s randomwalks are non-Markovian: the termina-

tion probability of a walk at the i-th step is a function

of i , i.e., the walk has to remember the number of steps

that it has traversed, so as to decide whether it should

terminate.

The Markovianness of PPR random walks is a key prop-

erty exploited in the methods in [19, 25, 27, 28]. Specifically,

when computing the PPR p(u,v) from node u to node v , the
methods in [19, 25, 28] require performing a backward search
which starts fromv and traverses the incoming edges of each

node in a backward manner. For each nodew encountered

and each of its incoming neighbor x , the backward search

needs to calculate the probability that a random walk hitting

x at a certain step would arrive atw at the next step. For PPR

random walks, this probability is a constant decided only by

α and the number of x ’s outgoing neighbors. Unfortunately,

for HKPR randomwalks the probability is not a constant, but

a variable depending on the number of steps that the walk

has taken before reaching x . In other words, this variable

is not unique even when w and x are fixed, due to which

the backward search no longer can be utilized. This issue

Table 4: Statistics of graph datasets.
Dataset n m d̄

DBLP 317,080 1,049,866 6.62

Youtube 1,134,890 2,987,624 5.27

PLC 2,000,000 9,999,961 9.99

Orkut 3,072,441 117,185,083 76.28

LiveJournal 3,997,962 34,681,189 17.35

3D-grid 9,938,375 29,676,450 5.97

Twitter 41,652,231 1,202,513,046 57.74

Friendster 65,608,366 1,806,067,135 55.06

makes it unpalatable to extend the methods in [19, 25, 28] to

compute HKPR.

Meanwhile, the FORA method in [27] does not require a

backward search; instead, it combines random walks with a

forward search from u that is similar to the HK-Push algo-

rithm used in TEA. However, TEA is more sophisticated than

FORA as it needs to account for the non-Markovianness

of HKPR, and there are three major differences between

the two methods. First, TEA requires maintaining multiple

residue vectors in its invocation of HK-Push, since it needs
to differentiate the residues generated at different steps of

the forward search; otherwise, it would not be able to com-

bine the results of HK-Push with random walks because of

HKPR’s non-Markovianness. In contrast, FORA only needs

to maintain one residue vector, as the Markovianness of PPR

allows it to merge the resides produced at different steps of

the forward search. Second, the theoretical analysis of TEA is

more challenging than that of FORA, since it is more compli-

cated to (i) maintain and update multiple residue vectors and

(ii) combine random walks with the forward traversal in a

way that takes into account the non-Markovianness of HKPR.

Third, TEA provides an accuracy guarantee in terms of each

node’s degree-normalized HKPR, whereas FORA’s accuracy
guarantee is on each node’s PPR without normalization.

Last but not the least, we note that our TEA+ algo-

rithm, which significantly improves over TEA in terms of

practical efficiency, is based on a new optimization that is

specifically designed for HKPR and our notion of (d, ϵr , δ )-
approximation. This optimization is inapplicable for PPR

computation, which further differentiates TEA+ from FORA.

7 EXPERIMENTS
We now investigate the performance of our proposed al-

gorithms and report the key results. Additional results are

discussed in Appendix B and [1].

7.1 Experimental Setup
We conduct all experiments on a Linux server with a Intel

Xeon(R) E5-2650 v2@2.60GHz CPU and 64GB RAM. For

fair comparison, all algorithms are implemented in C++ and

compiled by g++ 4.8 with -O3 optimization.
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We use 6 undirected real-world graphs and 2 synthetic

graphs which are used in recent work [12, 17, 22] as bench-

mark datasets (Table 4). We obtain DBLP, Youtube, Orkut,
LiveJournal, and Friendster from [2]. PLC is a synthetic graph,

and it is generated by Holme and Kim algorithm for generat-

ing graphs with powerlaw degree distribution and approxi-

mate average clustering. 3D-grid is a synthetic grid graph in

3-dimensional space where every node has six edges, each

connecting it to its 2 neighbors in each dimension. Twitter is
a symmetrized version of a snapshot of the Twitter network

[16]. For each dataset, we pick 50 seed nodes uniformly at

random as our query sets.

Unless specified otherwise, following previous work [6,

17], we set heat constant t = 5. In addition, for all randomized

algorithms, we set failure probability pf = 10
−6
. We report

the average query time (measured in wall-clock time) of each

algorithm on each dataset with various parameter settings.

Note that the y-axis is in log-scale and the measurement unit

for running time is millisecond (ms).

7.2 Tuning Parameter c for TEA+
First, we experimentally study how to set the parameter c so
as to obtain the best performance for TEA+ in practice. We

run TEA+ with parameters ϵr = 0.5, δ = 1

n , and varying c
from 0.5 to 5 on all 8 graphs.

Figure 1 plots the running time of TEA+ on each dataset

for different c . We omit the results for Twitter and Friendster
when c = 0.5, because it takes several hours to finish one

query. We can make the following observations. For each

dataset, the running time decreases first as c grows. The

reason is that TEA+ degrades toMonte-Carlowhen c is very
small, and if we keep increasing c , HK-Push+ will perform

more push operations so as to reduce the number of random

walks until c balances the costs incurred for HK-Push+ and

k-RandomWalk. On the other hand, when c increases further,
the overhead of HK-Push+ goes up gradually, disrupting the
balance between HK-Push+ and k-RandomWalk. This leads
to higher running time. More specifically, we can see that for

graphs with small average degree including DBLP, Youtube,
PLC and 3D-grid, the costs are minimized when c is around
2. On the other hand, for graphs with high average degree

(e.g., Orkut, LiveJournal, Twitter, and Friendster), we note

that c = 2.5 achieves the best performance. Based on the

above observations, a good value choice for c is 2.5, when
the overheads on most of the graphs are minimized. In the

sequel, we set c = 2.5.

7.3 Comparison between TEA and TEA+
In this set of experiments, we compare TEA+with TEA based

on identical theoretical accuracy guarantees. For both TEA
and TEA+, we set the relative error threshold ϵr = 0.5. Since
the best values for rmax vary largely for different parameter

OrkutOrkut

PLCPLC

LiveJournalLiveJournal TwitterTwitter FriendsterFriendster

YoutubeYoutubeDBLPDBLP3D-grid3D-grid

101

102

103

104

105

106

1 2 3 4 5
c

running time (ms)

Figure 1: Running time of TEA+ vs c.
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(a) 3D-grid
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0.1 0.3 0.5 0.7 0.9
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running time (ms)

(b) Friendster

Figure 2: Running time vs ϵr .
settings and various datasets, we are unable to find a uni-

versal optimal value for rmax . Instead, we tune rmax for TEA
with different error thresholds on each dataset separately.

That is, we scale
1

ω ·t up or down such that the costs for

HK-Push and k-RandomWalk in TEA are roughly balanced

and the total cost is minimized.

Figure 2 reports the computational time of TEA and TEA+
on representative datasets when varying ϵr from 0.1 to 0.9
and fixing δ = 10

−6
. Results on other datasets are qualita-

tively similar and are reported in [1]. Observe that TEA+
always outperforms TEA markedly for all datasets. In par-

ticular, when the relative error threshold ϵr is large (e.g.,

0.5 − 0.9), TEA+ is one to two orders of magnitude faster

than TEA on Friendster, but only around 5 times faster on

3D-grid. This is caused by the fact that each node in 3D-
grid has six neighbors, thus residues will drop below the

threshold quickly and both TEA and TEA+ require very few

random walks. As we keep decreasing ϵr , the gap between

TEA and TEA+ is narrowed. Especially, when ϵr = 0.1, TEA+
achieves around 5× to 10× speedup. The reasons are as fol-

lows. When the relative error thresholds are large, TEA+
only needs a small number of push operations and random

walks due to the new termination conditions of HK-Push+
and residue reduction method compared to TEA. However,
when the relative error thresholds are very small, the termi-

nation conditions of HK-Push+ are harder to satisfy and as

a result incurs much higher costs to terminate. Furthermore,

the residue reduction method is not able to reduce the num-

ber of random walks significantly since the residue sum is

already small. Thus, both TEA and TEA+ performmany push
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Figure 3: Running time vs conductance for local clustering queries (best viewed in color).

operations and random walks, and as a result, the speedup

is modest. The results demonstrate the power of new ter-

mination conditions of HK-Push+ and residue reducation

method in TEA+, especially when the error thresholds are

not very small. In summary, TEA+ outperforms TEA without
sacrificing theoretical accuracies of HKPR values.

7.4 Comparisons with Competitors
We compare TEA and TEA+ against ClusterHKPR,
SimpleLocal [39], CRD [26], Monte-Carlo and HK-Relax
in terms of clustering quality and efficiency (or memory

overheads). Recall thatMonte-Carlo is a random-walk-based

approach as described in Section 3. Monte-Carlo accepts

two thresholds ϵr and δ , and a failure probability pf as

inputs. It performs

2(1+ϵr /3) log (n/pf )
ϵ 2

r ·δ
random walks from

the seed node s and returns a (d, ϵr , δ )-approximate HKPR

vector for s with probability at least 1−pf .HK-Relax ensures

ϵa absolute error in each
ρ̂s [v]
d (v) , which is incomparable

with the accuracy guarantees of other three methods,

that is (d, ϵr , δ )-approximation guarantees. Hence, we do

not compare all algorithms under the same theoretical

accuracy guarantees. Instead, we evaluate each method

by its empirical clustering quality (i.e., conductance) and

empirical running time (or memory overheads) with various

parameter settings and find the method that achieves the

best trade-off in terms of clustering quality and running

time. HK-Relax only has one internal parameter ϵa . We

vary it in {10
−8, 10

−7, 10
−6, 10

−5, 10
−4} in our experiments.

Since Monte-Carlo, TEA, and TEA+ have almost the same

parameters, we set relative error threshold ϵr = 0.5, and δ is

varied in {2×10
−8, 2×10

−7, 2×10
−6, 2×10

−5, 2×10
−4} for all

of them. ClusterHKPR has one internal parameter ϵ , which
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Figure 4: Memory cost vs. conductance.

is varied in {0.005, 0.01, 0.02, 0.05, 0.1}. We vary the locality

parameter δ of SimpleLocal in {0.005, 0.01, 0.02, 0.05, 0.1}.
In addition, we vary the number of iterations of CRD in

{7, 10, 15, 20, 30} and keep other parameters default. For fair

comparison, we let the x-axis be the average conductance of
the output clusters and the y-axis be the average running
time (or memory overheads), depicting the empirical

clustering quality and empirical efficiency (or memory

overheads), respectively.

Figure 3 shows the average conductance of the output

clusters and the the average running time when varying the

aforementioned parameters for each algorithm.We canmake

the following observations. First, for each algorithm, when

the error thresholds (i.e., ϵa, ϵ and δ ) become smaller or the

number of iterations increase, the conductance of the output

clusters reduces (i.e., the quality of the output clusters im-

proves), as well as the computational time goes up markedly,

which accords with their theoretical time complexities. In

particular, SimpleLocal incurs very high running time as well

as poor cluster quality due to its high time complexity and

the fact that it is mainly devised for recovering the cluster

for a subset of nodes of the cluster rather than detecting a

cluster for a single seed node. We also note that CRD shows
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a better performance than SimpleLocal. However, it is still
much slower than HKPR-based methods. Hence, we omit the

results of SimpleLocal on the remaining datasets and that of

CRD on Orkut, LiveJournal, 3D-grid, Twitter and Friendster.
Second, we can see that Monte-Carlo and ClusterHKPR

take several minutes to finish one local clustering query on

all graph datasets in order to find clusters with small conduc-

tance. Hence, it is outperformed byHK-Relax, TEA and TEA+
by 1 to 3 orders of magnitude when they output clusters with

almost the same conductance. This is due to the fact that

Monte-Carlo and ClusterHKPR require performing a large

number of random walks. In fact, this is consistent with

the experimental results in prior work [12, 22]. Moreover,

it can be observed that HK-Relax always runs faster than
Monte-Carlo and ClusterHKPR and achieves more than 10×

speedup on all datasets except Orkut, Twitter, and Friendster.
To explain this phenomenon, recall thatHK-Relax requires it-
eratively pushing residuals to 1−K-hop nodes from the seed

node and K is very large (see Section 6). However, on graphs

with large average degrees (Orkut, Twitter, and Friendster)
the number of push operations increases dramatically after

several hops from the seed node.

Third, TEA+ outperforms HK-Relax by more than 10×

speedup on PLC,Orkut, Twitter, and Friendster, andmore than

4× speedup on the rest of graphs. The speedup is achieved by

new termination conditions for HK-Push+ and the residue

reduction method for reducing the number random walks.

However, we note that the speedup on DBLP, Youtube, Live-
Journal and 3D-grid is not as significant as that on PLC,Orkut,
Twitter, and Friendster. The reason is that these graphs either

have large clustering coefficients [42] or small average de-

grees. The first one can also be observed in our experiments.

With the same parameters as inputs to all three algorithms,

the conductance values of output clusters from PLC, Orkut,
Twitter, and Friendster are clearly greater than those from the

remaining four graphs (i.e., DBLP, Youtube, LiveJournal and
3D-grid). This implies that nodes in these four graphs are

more likely to cluster together, and then residues on these

graphs tend to be propagated within a small cluster of nodes

when HK-Push+ is performed. Now consider the second rea-

son. Recall that HK-Push+ iteratively distributes residues to

neighbors evenly before any termination condition is satis-

fied. Since the average degrees are small, the residues that

each node receives will be large. Additionally, it needs more

iterations to distribute the residues to more nodes, which

may not be done before termination. As a result of these two

factors, a few nodes will hold large residues rather thanmany

nodes holding small residues. Consequently, the residue re-

ductionmethod in TEA+ fails to significantly reduce the num-

ber of random walks. Note that HK-Relax, TEA and TEA+ all
terminate very quickly on 3D-grid (less than 10 milliseconds),

which is consistent with the observation in [22]. This is due

to the fact that each node in 3D-grid has six neighbors and
the residues will drop below the residue threshold quickly

after performing several rounds of push operations.

In addition, we also note that TEA fails to achieve con-

siderable speedup compared with HK-Relax. Especially on

DBLP, Youtube, LiveJournal, and 3D-grid, TEA’s performance

degrades to the same level as that of HK-Relax. This is also
caused by aforementioned high clustering coefficients and

small average degrees of these graphs. TEA+ is around 4×

faster than TEA onOrkut, Twitter, and Friendster. In summary,
our experiments demonstrate the power of new termination
condition of HK-Push+ and residue reduction method, which
reduce many push operations and random walks without sac-
rificing the cluster qualities.

Figure 4 shows thememory overheads (including the space

required to store the input graph) for two representative

datasets by varying the error thresholds. The results for

other datasets are qualitatively similar and are reported in [1].

First, we observe that the memory overheads on Twitter in-
crease with the reduction in error thresholds as more space

is required to store residues and HKPR values. However,

memory overheads on 3D-grid remain stable for all algo-

rithms. As each node in 3D-grid is connected to six neigh-

bors,ClusterHKPR,Monte-Carlo,HK-Relax, TEA and TEA+
easily detect the large set of nodes around the seed nodes

and the size of memory allocated for storing HKPR values for

this set of nodes remains stable. Second, we observe that the

memory overheads of all algorithms are roughly comparable

because space usage is dominated by the storage of the input

graph.

8 CONCLUSIONS
In this paper, we propose two novel heat-kernel-based local

clustering algorithms, TEA and TEA+, for computing approx-

imate HKPR values and local graph clustering efficiently.

Our algorithms bridge deterministic graph traversal with

Monte-Carlo random walks in a non-trivial way, thereby

overcoming the drawbacks of both and achieving significant

gain in performance in comparison to the state-of-the-art

local clustering techniques. Our experiments demonstrate

that TEA+ significantly outperforms the state-of-the-art heat-

kernel-based algorithm by at least 4 times on small graphs

and up to one order of magnitude on large graphs in terms of

computational time when producing clusters with the same

qualities.
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A PROOFS
A.1 Proof of Theorem 1

Proof. Let Yi be as defined in the context of Equation (9),

and let Y =
∑nr

i=1
Yi . By Line 12 of TEA, ρ̂s [v] = qs [v]+ Y ·α

nr
.

By Equation (10), the expectation of Y is

E[Y ] = E[
∑nr

i=1
Yi ] =

nr
α

(
ρs [v] − qs [v]

)
≤

nr
α · ρs [v].

Let λ = nr ϵr
α · ρs [v] and nr be as defined in Line 8 of TEA.

By the Chernoff bound (see Lemma 5), for any node v in V
with ρs [v] > d(v) · δ , we have

P[|Y − E[Y ]| ≥ λ] = P
[��ρ̂s [v] − ρs [v]�� ≥ ϵr · ρs [v]]

≤ exp

(
−
nr ·ϵ 2

r ·ρs [v]
2α ·(1+ϵr /3)

)
≤ (p ′f )

d (v).

On the other hand, let λ = nr ϵr δd (v)
α . Then, for any node v

in V with ρs [v] ≤ d(v) · δ ,

P[|Y − E[Y ]| ≥ λ] = P
[��ρ̂s [v] − ρs [v]�� ≥ d(v) · ϵrδ

]
≤ exp

(
−

nr ·ϵ 2

r δ
2d2(v)

2α (1+ϵr /3)·ρs [v]

)
≤ (p ′f )

d (v).

By the union bound, forV1 = {v |v ∈ V s .t . ρs [v] > d(v) ·δ },
we have

P
[⋃

v ∈V1

{��ρ̂s [v] − ρs [v]�� ≥ ϵr · ρs [v]}] ≤ ∑
v ∈V1

(p ′f )
d (v),

and for V2 = {v |v ∈ V s .t . ρs [v] ≤ d(v) · δ }, we have

P
[⋃

v ∈V2

{��� ρ̂s [v]d (v) −
ρs [v]
d (v)

��� ≥ ϵrδ }] ≤ ∑
v ∈V2

(p ′f )
d (v).
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Therefore, we have the following results, respectively. With

probability at least 1 −
∑
v ∈V (p

′
f )

d (v)
, for every node v in

V with
ρs [v]
d (v) > δ ,

��� ρ̂s [v]d (v) −
ρs [v]
d (v)

��� ≤ ϵr · ρs [v]d (v) , and for every

node v in V with
ρs [v]
d (v) ≤ δ ,

��� ρ̂s [v]d (v) −
ρs [v]
d (v)

��� ≤ ϵrδ .
By the definition of p ′f in Equation (6), if

∑
v ∈V pd (v)−1

f ≤

1, then p ′f = pf , which leads to

∑
v ∈V (p

′
f )

d (v) =∑
v ∈V pd (v)f ≤ pf ; otherwise, p ′f =

pf∑
v∈V pd (v )−1

f

, hence∑
v ∈V (p

′
f )

d (v) <
∑
v ∈V

pd (v )f∑
v∈V pd (v )−1

f

= pf . Namely, ρ̂s is a

(d, ϵr , δ )-approximate HKPR vector with probability at least

1 − pf . □

A.2 Proof of Theorem 2
Proof. By Lemma 6 and the definition of h(k)u [v] in Equa-

tion 5, we have
h(k )u [v]
d (v) =

h(k )v [u]
d (u) . Then we can rewrite Equa-

tion (4) as follows

ρs [v] − qs [v] = d(v) ·
∑
u ∈V

∑K
k=0

[
r(k )s [u]
d (u) · h

(k )
v [u]

]
≤ d(v) ·

∑K
k=0

[
maxu ∈V

{
r(k )s [u]
d (u)

}
·
∑
u ∈V h(k )v [u]

]
.

Now we prove that

∑
u ∈V h(k)v [u] = 1 for any node v ∈ V

and k ∈ [0,K].∑
u ∈V h(k )v [u] =

∑∞
ℓ=0

[
η(k+ℓ)
ψ (k)

∑
u ∈V Pℓ[v,u]

]
=

∑∞
ℓ=0

η(k+ℓ)
ψ (k ) = 1.

Hence, ρs [v] − qs [v] ≤ d(v) ·
∑K

k=0
maxu ∈V

{
r(k )s [u]
d (u)

}
. Once

Inequality (11) held, we have
ρs [v]
d (v) −

qs [v]
d (v) ≤ ϵa, which com-

pletes the proof. □

A.3 Proof of Theorem 3
Proof. First, consider the case where TEA+ terminates

at Line 7, i.e.,

∑K
k=0

maxu ∈V

{
r(k )s [u]
d (u)

}
≤ ϵa . In that case, by

Theorem 2, for any node v ∈ V ,

��� ρ̂s [v]d (v) −
ρs [v]
d (v)

��� ≤ ϵa = ϵr · δ .
This indicates that, for any node v with ρs [v] > d(v) · δ ,��� ρ̂s [v]d (v) −

ρs [v]
d (v)

��� ≤ ϵr · ρs [v]d (v) . In addition, for any node v with

ρs [v] ≤ d(v)·δ ,
��� ρ̂s [v]d (v) −

ρs [v]
d (v)

��� ≤ ϵr ·δ . Thus, ρ̂s is a (d, ϵr , δ )-
approximate HKPR vector.

Now consider the case where TEA+ does not terminate

at Line 7. Let Yi be as defined in the context of Equation (9),

and let Y =
∑nr

i=1
Yi . By Lines 17 and 19 of TEA+,

ρ̂s [v] = qs [v] + Y ·α
nr
+

ϵr δ
2
· d(v).

By Equation (10), the expectation of Y is

E[Y ] = E[
∑nr

i=1
Yi ] =

nr
α

(
ρs [v] − qs [v] − bs [v]

)
≤

nr
α ·ρs [v].

Let λ = nr ϵr
2·α · ρs [v] and nr be as defined in Line 13 of TEA+.

By the Chernoff bound (see Lemma 5), for any node v in V
with ρs [v] > d(v) · δ , we have

P[|Y − E[Y ]| ≥ λ]

= P
[���ρ̂s [v] − ρs [v] + bs [v] − ϵr δ

2
· d(v)

��� ≥ ϵr
2
· ρs [v]

]
≤ exp

(
−
nr ·ϵ 2

r ·ρs [v]
8α ·(1+ϵr /6)

)
≤ (p ′f )

d (v).

On the other hand, let λ = nr ϵr δd (v)
2α . Then, for any node v

in V with ρs [v] ≤ d(v) · δ , we have

P[|Y − E[Y ]| ≥ λ]

= P
[���ρ̂s [v] − ρs [v] + bs [v] − ϵr δ

2
· d(v)

��� ≥ ϵr δ
2
· d(v)

]
≤ exp

(
−

nr ·ϵ 2

r δ
2d2(v)

8α (1+ϵr /6)·ρs [v]

)
≤ (p ′f )

d (v).

By union bound, for V1 = {v |v ∈ V s .t . ρs [v] > d(v) · δ },
we have

P
[⋃

v ∈V1

{��� ρ̂s [v]−ρs [v]+bs [v]
d (v) −

ϵr δ
2

��� ≥ ϵr
2
·
ρs [v]
d (v)

}]
≤

∑
v ∈V1

(p ′f )
d (v),

and for V2 = {v |v ∈ V s .t . ρs [v] ≤ d(v) · δ }, we have

P
[⋃

v ∈V2

{��� ρ̂s [v]−ρs [v]+bs [v]
d (v) −

ϵr δ
2

��� ≥ ϵr δ
2

}]
≤

∑
v ∈V2

(p ′f )
d (v).

By Inequality (19),

��� bs [v]
d (v) −

ϵr δ
2

��� ≤ ϵr δ
2
. Then, we have

the following results, respectively. With probability at least

1−
∑
v ∈V (p

′
f )

d (v)
, for every nodev inV with ρs [v] > d(v) ·δ ,��� ρ̂s [v]d (v) −

ρs [v]
d (v)

��� ≤ ϵr
2
·
ρs [v]
d (v) +

ϵr δ
2
≤ ϵr ·

ρs [v]
d (v) ,

and for every node v in V with ρs [v] ≤ d(v) · δ ,��� ρ̂s [v]d (v) −
ρs [v]
d (v)

��� ≤ ϵrδ .
By the definition of p ′f in Equation (6), the total failure

probability will be at most

∑
v ∈V (p

′
f )

d (v) ≤ pf . Therefore,

ρ̂s is a (d, ϵr , δ )-approximate HKPR vector with probability

at least 1 − pf . □

B ADDITIONAL EXPERIMENTS
Ranking Accuracy of Normalized HKPR. In this set of

experiments, we evaluate the accuracy and efficiency of

each method for computing normalized HKPR values (e.g.,

ρs [v]
d (v) ). First, we randomly select 50 seed nodes and ap-

ply the power method [20] with 40 iterations to compute

the ground-truth normalized HKPR values (we omit the

large datasets due to time and memory limitations). Fol-

lowing the experimental settings in Section 7.1, we run

HK-Relax, ClusterHKPR, Monte-Carlo, TEA and TEA+ to

generate normalized HKPR values for the selected seed

nodes with varied error thresholds. Specifically, we vary
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HK-RelaxMonte-Carlo TEATEA TEA+TEA+ClusterHKPR

100
101
102
103
104

0.9 0.925 0.95 0.975 1.0
NDCG

running time (ms)

100
101
102
103
104

0.5 0.6 0.7 0.8 0.9 1.0
NDCG

running time (ms)

100
101
102
103
104
105

0.6 0.7 0.8 0.9 1.0
NDCG

running time (ms)

10-1
100
101
102
103
104
105

0.25 0.4 0.55 0.7 0.85 1.0
NDCG

running time (ms)

(a) DBLP (b) Youtube (c) PLC (d) Orkut

Figure 5: Running time vs. NDCG for computing normalized HKPR (best viewed in color).

ϵ in {10
−8, 10

−7, 10
−6, 10

−5, 10
−4, 10

−3} for HK-Relax, ϵ in

{0.01, 0.02, 0.05, 0.1, 0.2, 0.3} for ClusterHKPR, and we set

ϵr = 0.5 and δ is varied in {2 × 10
−8, 2 × 10

−7, 2 × 10
−6, 2 ×

10
−5, 2 × 10

−4, 2 × 10
−3} for Monte-Carlo, TEA and TEA+,

respectively. Then, we evaluate the accuracy of each method

by using Normalized Discounted Cumulative Gain (NDCG)
[33], which is a classic metric for evaluating ranking results.

Figure 5 reports the performance of each method on four

datasets. We can make the following observations. First, as

we reduce the error thresholds, both the running time and

NDCGof eachmethod increasemarkedly, which is consistent

with their theoretical guarantees. Second, TEA+ consistently
incurs least running time while achieving the same NDCG

compared to the competing methods. In addition, TEA is

2 × −8× slower than TEA+ while HK-Relax runs even more

slowly. Especially on PLC and Orkut datasets, HK-Relax’s
performance degrades to the same level of ClusterHKPR
andMonte-Carlo. AlthoughClusterHKPR andMonte-Carlo
also provide relative-error guarantees, they still incur the

highest overheads because they require a large number of

randomwalks. Third, we note that the efficiency and ranking

accuracy results accord with the efficiency and clustering

quality results reported in Section 7.4. This demonstrates

the relationship between ranking accuracy of normalized

HKPR and the quality of HKPR-based clustering algorithms,

emphasizing why our methods produce clusters with smaller

conductance than the competing ones.

Clusters Produced vs. Ground-truth. We collect the

top 5,000 ground-truth communities in DBLP, Youtube, Live-
Journal andOrkut datasets from [2].We select 100 seed nodes

from 100 known communities of size greater than 100 ran-

domly as the query set. For all algorithms, we vary t from
3 to 10 (t > 10 would give us clusters with substantially

lower quality) and their error thresholds respectively to pro-

duce clusters with highest average F1-measure (i.e., harmonic

mean of precision and recall). More specifically, we vary ϵ
from 0.005 to 0.35 for ClusterHKPR, ϵ from 10

−8
to 10

−1
for

HK-Relax. In addition, we fix ϵr = 0.5 and vary δ from 10
−8

to 10
−1

forMonte-Carlo, TEA and TEA+.

Table 5 reports the highest F1 measure of each algo-

rithm and their corresponding running times. TEA+ consis-

tently produces clusters with the best average F1-measures

and least running times for all datasets except DBLP. On
DBLP, TEA produces clusters with the best average F1-

measure while TEA+ produces clusters with slightly smaller

F1 measure but significantly faster. We also observe that

ClusterHKPR andMonte-Carlo generate very similar results

for all datasets. They run significantly slower than TEA and

TEA+ and also produce clusters with slightly smaller average

F1-measures than our methods. In addition, HK-Relax has
the worst performance on most datasets. The only exception

occurs on Orkut, where it produces clusters with the second

best F1-measure but 4× slower than TEA+.
SensitivityAnalysis to the SubgraphCharacteristics.

Next, we study the impact of query sets generated from

subgraphs of different characteristics on clustering quality

and efficiency. First, from each dataset of Youtube, PLC and

Orkut, we select 250 subgraphs with different densities [34]

randomly. Then we sort the subgraphs by their densities

in descending order (denoted as {SG1, SG2, · · · , SG250}). We

pick 50 nodes from SG1, · · · , SG50 respectively to form a

query set referred to as high-density seed nodes, 50 nodes

from SG100, · · · , SG150 respectively as medium-density seed

nodes, and 50 nodes from SG200, · · · , SG250 respectively as

low-density seed nodes. We run ClusterHKPR,Monte-Carlo,
HK-Relax, TEA and TEA+ with the same parameter settings

as in Section 7.4 on these three query sets.

Figure 7 plots the average conductance of the output clus-

ters and the average running times of all algorithms under

different error thresholds for the three query sets. We re-

port the results on Youtube and PLC here. The results on

the remaining datasets are qualitatively similar and are re-

ported in [1]. We can make the following observations. First,

TEA and TEA+ are consistently faster than the existing ap-

proaches for all query sets. Second, the conductance values of

each graph in Figures 7e and 7f are higher than the rest. This

is because subgraphs with high densities have low conduc-

tance. Also, both ClusterHKPR andMonte-Carlo show simi-

lar results on all query sets for all datasets whereasHK-Relax,
TEA and TEA+ are sensitive to the subgraph densities. Since
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Table 5: The result of evaluating all algorithms on finding real-world communities.

Data F1-measure Running Time (ms)
ClusterHKPR Monte-Carlo HK-Relax TEA TEA+ ClusterHKPR Monte-Carlo HK-Relax TEA TEA+

DBLP 0.13655 0.13631 0.13592 0.13679 0.136699 3053.95 2891.64 297.78 176 109.66

Youtube 0.10113 0.10097 0.09858 0.10133 0.10334 7.76 7.2 8.11 2.49 2

LiveJournal 0.64644 0.65105 0.64516 0.64959 0.67 1.34665 1.2 3.57 0.55 0.29

Orkut 0.18497 0.18464 0.19375 0.19333 0.19636 29.95 29.35 62.17 24.78 14.86

HK-RelaxMonte-Carlo TEATEA TEA+TEA+ClusterHKPR

101
102
103
104
105

 0.4  0.45  0.5  0.55  0.6  0.65  0.7
conductance

running time (ms)

101
102
103
104
105
106

 0.4 0.45 0.5 0.55 0.6 0.65 0.7
conductance

running time (ms)

102
103
104
105
106

0.35 0.45 0.55 0.65 0.75
conductance

running time (ms)

102
103
104
105
106

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
conductance

running time (ms)

(a) t = 5 (b) t = 10 (c) t = 20 (d) t = 40

Figure 6: Effect of heat constant t on PLC (best viewed in color).
HK-RelaxMonte-Carlo TEATEA TEA+TEA+ClusterHKPR

100
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104
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106

0.13 0.134 0.138 0.142 0.146
conductance

running time (ms)

(a) Youtube (high-density)

101
102
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104
105
106

0.38 0.45 0.52 0.59 0.65 0.7
conductance

running time (ms)

(b) PLC (high-density)
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0.17 0.21 0.25 0.29 0.34
conductance

running time (ms)

(c) Youtube (medium-density)
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106
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conductance

running time (ms)

(d) PLC (medium-density)

100
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conductance
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(e) Youtube (low-density)

101
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104
105
106

 0.4  0.45  0.5  0.55  0.6  0.65  0.7
conductance

running time (ms)

(f) PLC (low-density)

Figure 7: Effect of subgraph densities.

seed nodes picked from subgraphs with high densities would

have many neighbors, the residues in HK-Relax, TEA and

TEA+ will drop quickly as push operations are performed,

making them terminate quickly.

Effects of Heat Constant t . Lastly, we investigate the
impact of the heat constant t . Using the same parameter set-

tings and query set in Section 7.4, we run all algorithms on

DBLP and PLC datasets by varying t in {5, 10, 20, 40}. Figure

6 plots the average running time and average conductance

of the output clusters of each algorithm on PLC. The results
are qualitatively similar on DBLP and are reported in [1].

Observe that the running time of each algorithm increases

as we increase t , which is consistent with their time com-

plexities. ClusterHKPR and Monte-Carlo are the slowest as

t changes. We further observe that the advantage of TEA+
over competing methods is more prominent as t becomes

larger. More specifically, TEA+ is around 8 times faster than

HK-Relaxwhen t = 5 and the speedup goes up to two orders

of magnitude when t = 40. In addition, we find that the con-

ductance values of clusters produced by each algorithm with

larger t are smaller than those with smaller t . This shows that
we can obtain clusters with small conductance by choose a

large t . However, our “Clusters Produced vs. Ground Truth”
experiment reveals that clusters produced by all algorithms

with a large t are very different from the ground-truth. This

is because algorithms with a large t tend to give us a cluster

of nodes that are far from the seed node. As a result, choosing

a good t is paramount for finding high quality clusters.
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